Module Code
CHE4105
Staff:
Prof D Rooney Contribution: 12 Lectures, 6 Workshops
Prof P Robertson Contribution: 12 Lectures, 6 Workshops
Dr. C Wu Contribution: 12 Lectures, 6 Workshops
Industry speakers Contribution: 18 Workshops
DETAILED SYLLABUS – LECTURES (24 hours):
1. Introduction to the modern oil and gas sector (1 hour)
2. Thermodynamics of Oil and gas reserves (3 hours)
3. Downstream and upstream separation technologies (5 hours)
4. Energy transitions in the Oil and gas sector (3 hours)
5. Introduction to Renewable Energy systems (2 hours)
6. Biomass and Biofuels (1 hour)
7. Modern renewable energy technologies (5 hours)
8. Energy recovery and storage (4 hours)
9. Environmental impacts of energy (1 hour)
10. Renewable energy in transport systems (2 hours)
11. Future cities (1 hour)
12. Introduction of biomass gasification (2 hours)
13. Tar reduction from biomass gasification (2 hours)
14. Carbon capture using solid sorbents (2 hours)
DETAILED SYLLABUS – Workshops and Coursework (36 hours):
The students are provided with project work related to the learning outcomes of the module. Workshops will focus on the core themes listed below. These workshops will facilitate project work and is supported by reading and other online resources to support the discussion.
1. Thermodynamic model construction and use (6 hours)
2. Designing renewable energy systems (3 hours)
3. Future transport systems (3 hours)
4. Photovoltaic systems (6 hours)
5. Biomass handling (3 hours)
6. Agricultural emission abatement (3 hours)
7. Towards achieving a zero carbon economy (3 hours)
8. Regional Energy transitions (6 hours)
9. Leadership in the energy sector (3 hours)
At the end of the module the students are expected to be able to:
Understand the evolving role of Oil & Gas Companies in the context of global energy systems
Describe the technologies and underpinning engineering/science associated with modern Oil, Gas & Petrochemical facilities (upstream and downstream)
Critically evaluate various forms of renewable energy including wind, marine, solar geothermal and biomass
Explain key decision factors in choosing appropriate energy systems
Analyse and interpret data sets for energy trading
Apply advanced thermodynamic modelling techniques to areas including multi-phase hydrocarbon streams and waste heat recovery systems.
Understand current and emerging conversion routes for biomass and evaluate the related challenges towards their deployment.
Apply knowledge of renewable energy systems to the design of future buildings, cities and transport infrastructure.
STEM – Core skills in underlying physics, chemistry and math are applied to solving problems relevant to energy systems.
Critical thinking skills – Students can critically evaluate different options and present thought through analysis of energy systems.
Analytical – Evaluation of data and its use.
Communication – discussion of important factors and the presentation of data including written reports.
Learning and management - Improving independent learning and time management.
Assessment:
Continual Assessment 100 %.
To gain modular credit a student must pass the continual assessment elements of the course.
Course Requirements:
Assessed Classes Attendance 80 %
Module Pass Mark Veto 40 %
Coursework
100%
Examination
0%
Practical
0%
20
CHE4105
Full Year
24 Weeks
none