Module Code
CHM1102
Staff:
Dr A. C. Marr a.marr@qub.ac.uk
General Chemistry (18 Lectures); Skills Workshop – Essential calculations for practical chemistry.
Prof. Małgorzata Swadzba-kwasny m.swadzaba-kwasny@qub.ac.uk Main Group Chemistry (10 Lectures, 2 Seminars); Skills Workshop – Scientific Writing and researching skills.
Prof. Stuart James s.james@qub.ac.uk
Introduction to Coordination Chemistry (10 Lectures, 2 Seminars)
Prof. Peter Nockemann p.nockemann@qub.ac.uk
Introduction to Solids (10 Lectures, 2 Seminars)
Dr P C Marr p.marr@qub.ac.uk
Skills Workshop – Laboratory Skills.
Contents:
Elements, Atoms, ions, electrons and the periodic table:
This course aims to give an introduction to the fundamental principles of atoms from the chemists’ viewpoint. Starting from a simple model and using the results of quantum mechanics a more appropriate model of the atom is presented. From this model trends in atomic and ionic properties which enable us to explain differences and similarities and predict the properties of different elements can be deduced.
The following topics are covered:
The Basics: Element, The periodic table, atom, mole...
The Atom: The Bohr Atom.
The Electron: Wave-Particle Duality and The Schrödinger Wave Equation, Probability Density, Radial Distribution Function, Orbitals, Quantum Numbers, s and p Orbitals, Phase, d Orbitals.
More than One Electron: Filling orbitals, The aufbau principle, The Pauli Exclusion Principle, Hund’s rules, Penetration, Shielding, Effective Nuclear Charge, Slater’s Rules, Size.
Trends: Ionization energy, Electron attachment enthalpy (affinity), Electronegativity, Ionic radii, Polarizability and polarizing power, Hydration enthalpies, Redox potentials.
Structure and Bonding:
This course introduces some important theories of bonding. Theories of bonding are discussed in some detail for discrete molecules. The discussion of bonding in molecular species centres on the valence bond and molecular orbital theories.
Intermolecular forces between molecules are also discussed.
Introduction to bonding: Discussion of types of structure and common bonding theories, examples of representative structures.
Hormonuclear Diatomic Molecules: Interatomic distance and covalent radii, Potential energy curves, attractive and repulsive forces, bond energy and enthalpy. Lewis structures, filled shells, the octet rule. Wavefunction, introduction to valence bond theory and molecular orbital theory, Valence bond theory: ionic and covalent contributions, resonance; Molecular orbital theory: molecular orbitals, linear combinations of atomic orbitals, orbital overlap, bonding and antibonding orbitals, MO diagrams, some shapes of MO’s, labelling MO’s, examples of simple MO diagrams, bond order.
Heteronuclear Diatomic Molecules: Lewis structures, valence bond approach, Molecular orbital theory, energy matching, symmetry, non bonding orbitals; electronegativity, electric dipole moments, carbon monoxide, isoelectronic molecules.
Polyatomic Molecules: Metal complexes and covalent polyatomics, coordination number, common geometries, molecules obeying the octet rule, valence bond theory, expanding the octet, hybridization (sp, sp2, sp3, sp3d, sp3d2), formal charge, single, double and triple carbon-carbon bonds, molecular shapes; molecular orbital theory: ligand group orbitals; comparison of VB and MO, macromolecules, fullerenes, proteins and hydrogen bonding.
Intermolecular Forces: Van-der-Waal forces, strength of forces.
Introduction to solids with extended structures: metals and semi-metals, ionic solids and covalent solids.
Main Group Chemistry:
Definitions: Oxidation Number and State, Valency.
Brønsted and Lewis acidity and basicity; hard and soft principles.
Chemistry of the s-block.
Introduction to the chemistry of the p-block elements, emphasizing:
Halides and hydrides.
Multiple bonding.
Molecular geometries (VSEPR theory).
Effective atomic number rule (Octet Rule).
Hypervalency.
Hydrogen Bonding.
Introduction to Coordination Chemistry:
Introduction to coordination chemistry of the d-block elements.
Trends and generalized properties, oxidation states.
Complexes and ligands, (Lewis acids / bases).
Co-ordination number, geometry, denticity, and chelates.
Nomenclature
Isomerism; geometrical, optical, ionisation, hydration, ligand, linkage and co-ordination.
Crystal field theory d-orbital splitting in octahedral, tetrahedral and square planar complexes, Δ, high / low spin.
Exploration of thermodynamic stability.
Redox Potentials
Introduction to Solids:
States of matter and intermolecular forces
Structure, energy and chemical bonding of solids
Basic principles of chemistry in the solid state
Structures of the elements, packing of spheres and metal structures
Relationship between electronic structure, chemical bonding and crystal structure
Salts, metals, ceramics, semiconductors and polymers
Basic chemical and physical properties of solids
Applications in materials chemistry
Skills Workshops
Scientific writing and researching skills
Laboratory Skills
Essential calculations for practical chemistry
Learning outcomes:
At the end of the module the students are expected to:
• understand electronic configurations and the fundmanetals of bonding
• understand Brønsted and Lewis acidity.
• determine the oxidation state, valency and molecular geometry in simple inorganic compounds.
• have a general overview of s and p-block chemistry.
• have a general overview of d-block chemistry
• have a general overview of the principles of chemistry in the solid state
• perform simple synthetic procedures following a method.
• Obtain and analyse data from physico-chemical phenomena.
Skills associated with module:
(All below are practised only):
Communication – some spoken during practicals and help sessions but in general written.
Numeracy – Level 3 attainment in maths and numbers
Improving own learning & performance – Basic level of time management
Problem-solving – Basic level of solving problems in exams, class tests. seminars and laboratories.
Safe handling of chemical materials, taking into account their physical and chemical properties, including any specific hazards associated with their use.
Standard laboratory procedures involved in synthetic and analytical work.
Assessment:
Examination (2nd semester) 50% (3hr)
Practicals 35 %
Tutorials 5 %
Class test (1st semester) 10%
Course Requirements:
Practical attendance at 80 %,
Practical report submission 80 %,
Both Coursework (which includes class test) and examination must be passed at 40 %.
Coursework
15%
Examination
50%
Practical
35%
30
CHM1102
Full Year
24 Weeks