Advanced Inorganic Chemistry

Overview

Module Structure:
a) Supramolecular Chemistry: Prof. Stuart James
b) Lanthanides and Actinides – Chemistry & Applications: Dr. Peter Nockemann
c) Structural Analysis Methods for Soft inorganic Materials: Dr. John Holbrey
d) Selective Oxidation Reactions: Dr. Mark Muldoon

Summary of Lecture Content:

A. SUPRAMOLECULAR CHEMISTRY (8 lectures)
Lecturer: Prof. S. L. James, s.james@qub.ac.uk

Summary:
• Introduction: Historical background, including the development of covalent synthesis. Cram, Pedersen, Lehn – chemistry beyond the molecule, molecular recognition. The biological analogy and inspiration. Definitions: supramolecular, supermolecule, self-assembly. The various types of intermolecular interactions: hydrogen-bonds, van der Waals forces, coordination bonds (can be thought of as intermolecular in some sense), aromatic interactions. Interaction strengths, distances, directionalities. Hydrophobic effect.
• Self-assembly: A method to make large structures in a single step. Importance of thermodynamic control (equilibria) to give a single product quantitatively. Contrast with standard non-quantitative covalent synthesis of kinetic products. Examples of reversible interactions, van der Waals, hydrogen bonds, aromatic interactions and coordination bonds. Very few examples of reversible C-C bond formation.
• Coordination self-assembly: Large discrete structures: squares, hexagons, cubes, adamantoid (tetrahedra), octahedra. Importance of ligand exchange rates – labile metals with low crystal field stabilisation energy. Relation of metal geometry/symmetry and ligand geometry/symmetry to final product. Polymers: diamandoid topology, interpenetration, and porosity.
• Hydrogen-bond based self assembly: Donors, acceptors, ADA-DAD combinations, melamine-polymers. Association in solution. Single, double, triple H-bonding and solvent effects. Supramolecular catalysts. Host-guest chemistry: Calixarenes, cyclodextrins (Febreze). Purification of C60 (Atwood). Cooperative guest binding, Shinkai face-to-face porphyrins, the wheel-and axle design.


B. Lanthanides and Actinides – Chemistry & Applications (8 lectures)
Lecturer: Dr. Peter Nockemann, p.nockemann@qub.ac.uk
Summary:
• Coordination complexes of lanthanide and actinide ions (f-block elements)
• Separation and purification of lanthanides and actinides
• Electronic spectra and luminescence of lanthanides and actinides
• Applications of lanthanide luminescence (OLEDs, medicine, sensors)
• Magnetism of lanthanides and actinides & applications
• Organometallic lanthanide compounds and applications in organic synthesis

Recommended reading:
Shriver & Atkins, Inorganic Chemistry, 5th edition, Oxford University Press, 2010, chapter 23.
C. Huang, Rare Earth Coordination Chemistry – Fundamentals and Applications, Wiley, 2010.
Current scientific literature and references given throughout the course.









C. Structural Analysis Methods for Soft inorganic Materials: (8 Lectures)

Lecturer: Dr. John Holbrey, j.holbrey@qub.ac.uk

Summary:
Determining the structure of molecules is a fundamental skill. The course is designed to enable students to interpret experimental data and understand the techniques used in modern materials chemistry to determine structure in soft (non-crystalline) materials. Emphasis will be placed on complementary and comparative understanding to enable decisions to be made about the most appropriate techniques to be applied to particular structural problems and how experimental data is transformed into structural information.
Techniques to be covered will include nuclear magnetic resonance spectroscopy, electron paramagnetic resonance spectroscopy, rotational and vibrational spectroscopy, electronic spectroscopy, and X-ray and neutron diffraction.


Recommended Reading:
'Structural Methods in Molecular Inorganic Chemistry' DWH Rankin, NW Mitzel, CA Morrison, Wiley, 2113. ISBN: 978-0-470-97278-6

The course will be illustrated using examples from the current scientific literature and references will be given throughout the course.





D. Selective Oxidation Reactions (8 lectures)
Lecturer: Dr. Mark Muldoon, m.j.muldoon@qub.ac.uk

Summary:
Oxidation chemistry is fundamentally important in the synthesis of fine chemicals and pharmaceuticals. The area of oxidation chemistry is wide and varied; therefore the course will focus on just some aspects of the field. Topics will include:
• The properties of dioxygen
• Singlet oxygen and reactions thereof
• Transition metal catalysis for selective oxidation reactions

Recommended reading:
For a general overview of oxidation catalysis:
• “Modern oxidation methods” edited by Jan-Erling Bäckvall. Electronic copy available via QUB library.
• Chapter 4 of “Green chemistry and catalysis” Roger A. Sheldon, Isabel Arends and Fred Van Rantwuk. Electronic copy available via QUB library.
However, much of the course will utilise current scientific literature and references will be given throughout the course.

Learning Objectives

Upon completion of the course, the students will have explored a series of topics of current international interest in inorganic chemistry, using the primary literature. They will have been exposed to the relationship between research and application of chemistry, and learn important scientific techniques used to investigate inorganic chemistry problems.

Skills

Application of fundamental chemistry principles to the progression of advanced areas of chemistry research, critical thinking and communication skills.

Assessment

Assessment:
Examination 100 %

Course Requirements:
Examination must be passed at 40 %.

Coursework

0%

Examination

100%

Practical

0%

Credits

20

Module Code

CHM4005

Teaching Period

Full Year

Duration

24 Weeks