Module Code
CHM7001
STAFF
NAME CONTRIBUTION
Prof. De Lorenzi (Pavia) 3 Lectures
Dr P Manesiotis
p.manesiotis@qub.ac.uk 9 Lectures / 4 seminars
Summary of Lecture Content:
Summary of Lecture Content:
Lecture 1: Introduction to separations and chromatography
Lecture 2: Liquid Chromatography 1
Lecture 3: Liquid Chromatography 2
Lecture 4: Liquid Chromatography 3
Lecture 5: Gas Chromatography
Lecture 6: TLC/IC/FPLC
Lecture 7: Self-Study: Method development and validation
Lecture 8: Size Exclusion Chromatography
Lecture 9: Capillary Electrophoresis 1
Lecture 10: Capillary Electrophoresis 2
Lecture 11: Sample preparation
Lecture 12: Hyphenated analytical techniques
Summary of Practical Content:
Workshop 1 & Practical 1: HPLC instrumentation and familiarisation with procedures and software.
Workshop 2 & Practical 2: HPLC method development.
Workshop 3 & Practical 3: HPLC method validation and assay of pharmaceutical mixture.
Workshop 4 & Practical 4: Gas chromatography.
At the end of the module the students are expected to:
• Perform enhanced laboratory and instrumentation skills related to modern separation techniques.
• Apply the theoretical background of separation techniques to the analysis of pharmaceuticals, biopharmaceuticals and related products.
• Apply basic and advanced procedures used in the chromatographic analysis of pharmaceuticals, biopharmaceuticals and related products.
• Possess practical skills associated with analytical instrumentation and techniques including HPLC, GC, IC, TLC and GPC.
• Read, understand and assimilate new information and subsume acquired knowledge into a concise format.
• Reflect on experimental outcomes and use this in relation to overcoming analytical method development orientated problems.
• Demonstrate problem solving skills.
• Perform advanced mathematical and statistical manipulation of data.
• Demonstrate effective written and oral communication skills, including preparation and presentation of technical reports based on experimental results.
• Be able to working in a team, through participation in group projects.
• Demonstrate critical thinking through the validation of information (personal and literature data) and the application of theoretical knowledge to practical method development and problem solving.
• Ability to obtain and record relevant analytical data.
• Ability to perform data handling, interpretation of results and formulating conclusions.
• Ability to produce written reports utilising IT skills.
Assessment:
Examination 70 % (3 hours)
Coursework 30 %
Course Requirements:
Coursework submission 100 %
Laboratory Class attendance 100 %
Examination theory Veto 50 %
Both the exam and total coursework elements must be passed at 50%.
Coursework
30%
Examination
70%
Practical
0%
20
CHM7001
Full Year
24 Weeks