Eng Hydrology and Hydrogeology

Overview

The course introduces hydrological cycle and its application in engineering. The course covers aspects of surface and sub surface hydrology, and focuses on the engineering context of the topic.
The course content includes:
The hydrological cycle; meteorological data; components of hydrographs and influences on their shape; baseflow separation and hydrograph analysis; derived and synthetic unit hydrographs, flood forecasting using frequency analysis; synthetic data generation; abstraction from, and augmentation of, river flows; flow duration curves; risk assessment; flow analysis. Hydrometry, quantification of groundwater through flow balances, direct and indirect recharge mechanisms, fluid flow in vadose zone, solute transport in the vadose zone, darcy’s law, laboratory based permeability measurements, groundwater flow in fractured media, averaged hydraulic conductivity and transmissivity, groundwater level fluctuations effective porosity and advective velocity calculations, advection and dispersion in contaminant transport, classification of groundwater bodies, geological influences on groundwater flow, flow in heterogeneous and anisotropic media, flow nets vertical and lateral hydraulic gradient calculations, 1D modelling groundwater flow in confined and unconfined systems, radial flow in confined and unconfined systems under steady-state and unsteady state conditions, well efficiency.

Learning Objectives

On completion of the module you should:
be familiar with methods of collecting and interpreting hydrological data; you should know the techniques used to analyse flood hydrographs; you should understand frequency analysis of hydrological events and have a working knowledge of methods of hydrological forecasting; recognition of the key concepts related to groundwater flow, groundwater management and the role of groundwater in the influencing processes in the wider environment.
The module is aimed at developing practical skills in integrating key hydraulic and geological concepts and techniques to address realistic issues currently faced by practicing Environmental Engineers. This will require employment of a range of methods conventionally used in hydrology, geology, soil mechanics and hydraulics to develop a coherent understanding of how groundwater behaves in the wider environment and how it impacts both natural processes (e.g. river flow) and human activity (e.g. excavation, water supply, contaminant transport).
On completion of the course you should be able to:
• Interpret hydrological data and estimate the exceedance or non exceedance probability of a river flow event; interpret flow rating and flow duration curves; estimate flood volumes in gauged catchments subject to rainfall; undertake a risk analysis.
• Conceptualise groundwater flow mechanisms, quantify the significance of groundwater on a catchment scale, quantify hydraulic conductivity using multi-scale methods, employ geological, hydrological, hydraulic and water quality data to develop coherent models of groundwater flow and contaminant transport processes in a range of hydrogeological settings, evaluate the potential of heterogeneity and anisotropy influence groundwater conditions, recognise the potential implications of particular geological conditions on hydrogeological regimes

Skills

On completion of the course you should be able to:
Undertake a frequency analysis of hydrological events; use appropriate methodologies to derive design data; calculate the effects of abstractions from rivers; evaluate consents for discharges to rivers. Quantify the groundwater component in flow balances using hydrological data, determine the potential of particular rock and soil types to be hydrogeologically productive, or otherwise, employ hydraulic head data to quantify groundwater flow rates and directions, integrate geological and hydrogeological data to develop conceptual models of groundwater flow, develop mathematical (numerical and analytical) models of groundwater flow, analyse pumping test data to determine transmissivity, hydraulic conductivity and, where relevant storage (specific storage and specific yield)
The module is aimed to enhance the following skills-independent learning-transfer of theoretical concepts to problem-based applications. More specifically it the course develops the following abilities:
To develop derived data sets, to integrate data from a range of disciplines to develop coherent conceptual models, quantification of conceptual models, solving non-routine problems and think / solve three-dimensional and four-dimensional (in space and time) problems.

Assessment

None

Coursework

60%

Examination

10%

Practical

30%

Credits

20

Module Code

CIV4038

Teaching Period

Autumn Semester

Duration

12 Weeks