Module Code
MTH2012
Cauchy sequences, especially their characterisation of convergence. Infinite series: further convergence tests (limit comparison, integral test), absolute convergence and conditional convergence, the effects of bracketing and rearrangement, the Cauchy product, key facts about power series (longer proofs omitted). Uniform continuity: the two-sequence lemma, preservation of Cauchyness (and the partial converse on bounded domains), equivalence with continuity on closed bounded domains, a gluing lemma, the bounded derivative test. Mean value theorems including that of Cauchy, proof of l'Hôpital's rule, Taylor's theorem with remainder. Riemann integration: definition and study of the main properties, including the fundamental theorem of calculus.
It is intended that students shall, on successful completion of the module, be able to: understand and apply the Cauchy property together with standard Level 1 techniques and examples in relation to limiting behaviour for a variety of sequences; understand the relationships between sequences and series, especially those involving the Cauchy property, and of standard properties concerning absolute and conditional convergence, including power series and Taylor series; demonstrate understanding of the concept of uniform continuity of a real function on an interval, its determination by a range of techniques, and its consequences; understand through the idea of differentiability how to develop and apply the basic mean value theorems; describe the process of Riemann integration and the reasoning underlying its basic theorems including the fundamental theorem of calculus, and relate the concept to monotonicity and continuity.
Knowledge of core concepts and techniques within the material of the module. A good degree of manipulative skill, especially in the use of mathematical language and notation. Problem solving in clearly defined questions, including the exercise of judgment in selecting tools and techniques. Analytic and logical approach to problems. Clarity and precision in developing logical arguments. Clarity and precision in communicating both arguments and conclusions. Use of resources, including time management and IT where appropriate.
None
Coursework
10%
Examination
90%
Practical
0%
20
MTH2012
Autumn Semester
12 Weeks