Algebra

Overview

Rings, subrings, prime and maximal ideals, quotient rings, homomorphisms, isomorphism theorems, integral domains, principal ideal domains, modules, submodules and quotient modules, module maps, isomorphism theorems, chain conditions (Noetherian and Artinian), direct sums and products of modules, simple and semisimple modules.

Learning Objectives

It is intended that students shall, on successful completion of the module, be able to: understand, apply and check the definitions of ring and module; subring/submodule and ideal against concrete examples; understand and apply the isomorphism theorems; understand and check the concepts of integral domain, principal ideal domain and simple ring; understand and be able to produce the proof of several statements regarding the structure of rings and modules; master the concept of Noetherian and Artinian Modules and rings.

Skills

Numeracy and analytic argument skills, problem solving, analysis and construction of proofs.

Assessment

None

Coursework

30%

Examination

70%

Practical

0%

Credits

20

Module Code

MTH3012

Teaching Period

Autumn Semester

Duration

12 Weeks