Financial Mathematics

Overview

Introduction to financial derivatives: forwards, futures, swaps and options; Future markets and prices; Option markets; Binomial methods and risk-free portfolio; Stochastic calculus and random walks; Ito's lemma; the Black-Scholes equation; Pricing models for European Options; Greeks; Credit Risk.

Learning Objectives

On completion of the module, it is intended that students will be able to: explain and use the basic terminology of the financial markets; calculate the time value of portfolios that include assets (bonds, stocks, commodities) and financial derivatives (futures, forwards, options and swaps); apply arbitrage-free arguments to derivative pricing; use the binomial model for option pricing; model the price of an asset as a stochastic process; define a Wiener process and derive its basic properties; obtain the basic properties of differentiation for stochastic calculus; derive and solve the Black-Scholes equation; modify the Black-Scholes equation for various types of underlying assets; price derivatives using risk-neutral expectation arguments; calculate Greeks and explain credit risk.

Skills

Application of Mathematics to financial modelling. Apply a range of mathematical methods to solve problems in finance. Assimilating abstract ideas.

Assessment

None

Coursework

20%

Examination

70%

Practical

10%

Credits

20

Module Code

MTH3025

Teaching Period

Spring Semester

Duration

12 Weeks