Module Code
PHY2005
Atomic:
Hydrogenic quantum numbers, Stern-Gerlach experiment, spin-orbit interaction, fine structure, quantum defect theory, central field approximation, LS coupling, Hund's rules, theory of the helium atom, selection rules, atomic spectra and transition probabilities, first order perturbation theory, Zeeman effect.
Nuclear:
Observation of nuclear properties, nuclear radius, mass (semi-empirical formula), inter-nucleon potential, radioactive decay mechanisms, fission and fusion, interactions of particles with matter.
Students will be able to:
Describe how atomic models have been developed from theoretical concepts and experimental observations.
Recognise and use basic definitions to define atomic states and perform routine calculations to predict their energies and properties.
Describe qualitatively the properties of nuclei and radiation making quantitative estimates of properties such as nuclear radius, binding energy, particle energy, and Q-values.
Plan, execute and report the results of an experiment or investigation, and compare results critically with predictions from theory
Problem solving. Searching for and evaluating information from a range of sources. Written communication of scientific concepts in a clear and concise manner. Working independently and meeting deadlines.
None.
Coursework
40%
Examination
60%
Practical
0%
20
PHY2005
Spring Semester
12 Weeks
PHY1001 and, PHY1002 or AMA1020