Module Code
PHY4008
Introduction to Plasmas: applications, fundamental concepts
Single particle orbit theory: Motion of charged particles in constant/varying electric and magnetic fields, particle drift
Plasma as Fluid: Two fluids model, Plasma oscillations and frequency.
Waves in Plasma: Electron plasma wave, Ion acoustic wave, electromagnetic wave propagation in plasma
Collisions and Resistivity: Concept of plasma resistivity, Collisional absorption of laser in plasma
Intense laser plasma Interaction: Resonance absorption, Landau damping, Ponderomotive force, Interaction in the relativistic regime, particle (electron and ion) acceleration mechanisms
Students will be able to:
Demonstrate knowledge and understanding of the physics of plasmas relevant to a range of research areas from astrophysics to laser-plasma interactions.
Understanding and derive the behaviour of charges particles in presence of electric and magnetic fields.
Derive and interpret various plasma phenomenon using fluid theory
Review scientific literature and report on current research topics individually or as part of a group.
Problem solving. Searching for and evaluating information from a range of sources. Written and oral communication of scientific concepts in a clear and concise manner. Working independently or as part of a group and meeting deadlines.
NONE
Coursework
30%
Examination
70%
Practical
0%
10
PHY4008
Spring Semester
12 Weeks